66 research outputs found

    09302 Abstracts Collection -- New Developments in the Visualization and Processing of Tensor Fields

    Get PDF
    From 19.07. to 24.07.2009, the Dagstuhl Seminar 09302 ``New Developments in the Visualization and Processing of Tensor Fields \u27\u27 was held in Schloss Dagstuhl~--~Leibniz Center for Informatics. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Properties of higher order nonlinear diffusion filtering

    Get PDF
    This paper provides a mathematical analysis of higher order variational methods and nonlinear diffusion filtering for image denoising. Besides the average grey value, it is shown that higher order diffusion filters preserve higher moments of the initial data. While a maximum-minimum principle in general does not hold for higher order filters, we derive stability in the 2-norm in the continuous and discrete setting. Considering the filters in terms of forward and backward diffusion, one can explain how not only the preservation, but also the enhancement of certain features in the given data is possible. Numerical results show the improved denoising capabilities of higher order filtering compared to the classical methods

    Editorial — Special Issue: ISMM 2019

    Get PDF
    This editorial presents the Special Issue dedicated to the conference ISMM 2019 and summarizes the articles published in this Special Issue

    PDE-based morphology for matrix fields : numerical solution schemes

    Get PDF
    Tensor fields are important in digital imaging and computer vision. Hence there is a demand for morphological operations to perform e.g. shape analysis, segmentation or enhancement procedures. Recently, fundamental morphological concepts have been transferred to the setting of fields of symmetric positive definite matrices, which are symmetric rank two tensors. This has been achieved by a matrix-valued extension of the nonlinear morphological partial differential equations (PDEs) for dilation and erosion known for grey scale images. Having these two basic operations at our disposal, more advanced morphological operators such as top hats or morphological derivatives for matrix fields with symmetric, positive semidefinite matrices can be constructed. The approach realises a proper coupling of the matrix channels rather than treating them independently. However, from the algorithmic side the usual scalar morphological PDEs are transport equations that require special upwind-schemes or novel high-accuracy predictor-corrector approaches for their adequate numerical treatment. In this chapter we propose the non-trivial extension of these schemes to the matrix-valued setting by exploiting the special algebraic structure available for symmetric matrices. Furthermore we compare the performance and juxtapose the results of these novel matrix-valued high-resolution-type (HRT) numerical schemes by considering top hats and morphological derivatives applied to artificial and real world data sets

    Adaptive continuous-scale morphology for matrix fields

    Get PDF
    In this article we consider adaptive, PDE-driven morphological operations for 3D matrix fields arising e.g. in diffusion tensor magnetic resonance imaging (DT-MRI). The anisotropic evolution is steered by a matrix constructed from a structure tensor for matrix valued data. An important novelty is an intrinsically one-dimensional directional variant of the matrix-valued upwind schemes such as the Rouy-Tourin scheme. It enables our method to complete or enhance anisotropic structures effectively. A special advantage of our approach is that upwind schemes are utilised only in their basic one-dimensional version. No higher dimensional variants of the schemes themselves are required. Experiments with synthetic and real-world data substantiate the gap-closing and line-completing properties of the proposed method

    A generic approach to diffusion filtering of matrix-fields

    Get PDF
    Diffusion tensor magnetic resonance imaging (DT-MRI), is a image acquisition method, that provides matrix-valued data, so-called matrix fields. Hence image processing tools for the filtering and analysis of these data types are in demand. In this artricle we propose a generic framework that allows us to find the matrix-valued counterparts of the Perona-Malik PDEs with various diffusivity functions. To this end we extend the notion of derivatives and associated differential operators to matrix fields of symmetric matrices by adopting an operator-algebraic point of view. In order to solve these novel matrix-valued PDEs successfully we develop truly matrix-valued analogs to numerical solution schemes of the scalar setting. Numerical experiments performed on both synthetic and real world data substantiate the effectiveness of our novel matrix-valued Perona-Malik diffusion filters

    A generic approach to the filtering of matrix fields with singular PDEs

    Get PDF
    There is an increasing demand to develop image processing tools for the filtering and analysis of matrix-valued data, so-called matrix fields. In the case of scalar-valued images parabolic partial differential equations (PDEs) are widely used to perform filtering and denoising processes. Especially interesting from a theoretical as well as from a practical point of view are PDEs with singular diffusivities describing processes like total variation (TV-) diffusion, mean curvature motion and its generalisation, the so-called self-snakes. In this contribution we propose a generic framework that allows us to find the matrix-valued counterparts of the equations mentioned above. In order to solve these novel matrix-valued PDEs successfully we develop truly matrix-valued analogs to numerical solution schemes of the scalar setting. Numerical experiments performed on both synthetic and real world data substantiate the effectiveness of our matrix-valued, singular diffusion filters

    Curvature-driven PDE methods for matrix-valued images

    Get PDF
    Matrix-valued data sets arise in a number of applications including diffusion tensor magnetic resonance imaging (DT-MRI) and physical measurements of anisotropic behaviour. Consequently, there arises the need to filter and segment such tensor fields. In order to detect edgelike structures in tensor fields, we first generalise Di Zenzo\u27s concept of a structure tensor for vector-valued images to tensor-valued data. This structure tensor allows us to extend scalar-valued mean curvature motion and self-snakes to the tensor setting. We present both two-dimensional and three-dimensional formulations, and we prove that these filters maintain positive semidefiniteness if the initial matrix data are positive semidefinite. We give an interpretation of tensorial mean curvature motion as a process for which the corresponding curve evolution of each generalised level line is the gradient descent of its total length. Moreover, we propose a geodesic active contour model for segmenting tensor fields and interpret it as a minimiser of a suitable energy functional with a metric induced by the tensor image. Since tensorial active contours incorporate information from all channels, they give a contour representation that is highly robust under noise. Experiments on three-dimensional DT-MRI data and an indefinite tensor field from fluid dynamics show that the proposed methods inherit the essential properties of their scalar-valued counterparts

    Mathematical morphology for tensor data induced by the Loewner orderingin higher dimensions

    Get PDF
    Positive semidefinite matrix fields are becoming increasingly important in digital imaging. One reason for this tendency consists of the introduction of diffusion tensor magnetic resonance imaging (DTMRI). In order to perform shape analysis, enhancement or segmentation of such tensor fields, appropriate image processing tools must be developed. This paper extends fundamental morphological operations to the matrix-valued setting. We start by presenting novel definitions for the maximum and minimum of a set of matrices since these notions lie at the heart of the morphological operations. In contrast to naive approaches like the component-wise maximum or minimum of the matrix channels, our approach is based on the Loewner ordering for symmetric matrices. The notions of maximum and minimum deduced from this partial ordering satisfy desirable properties such as rotation invariance, preservation of positive semidefiniteness, and continuous dependence on the input data. We introduce erosion, dilation, opening, closing, top hats, morphological derivatives, shock filters, and mid-range filters for positive semidefinite matrix-valued images. These morphological operations incorporate information simultaneously from all matrix channels rather than treating them independently. Experiments on DT-MRI images with ball- and rod-shaped structuring elements illustrate the properties and performance of our morphological operators for matrix-valued data

    Mathematical Morphology on Tensor Data Using the Loewner Ordering

    Get PDF
    The notions of maximum and minimum are the key to the powerful tools of greyscale morphology. Unfortunately these notions do not carry over directly to tensor-valued data. Based upon the Loewner ordering for symmetric matrices this paper extends the maximum and minimum operation to the tensor-valued setting. This provides the ground to establish matrix-valued analogues of the basic morphological operations ranging from erosion/dilation to top hats. In contrast to former attempts to develop a morphological machinery for matrices, the novel definitions of maximal/minimal matrices depend continuously on the input data, a property crucial for the construction of morphological derivatives such as the Beucher gradient or a morphological Laplacian. These definitions are rotationally invariant and preserve positive semidefiniteness of matrix fields as they are encountered in DT-MRI data. The morphological operations resulting from a component-wise maximum/minimum of the matrix channel
    • …
    corecore